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Abstract

Geomembrane tubes may be used as an alternative to sandbags for flood protection. The static and
dynamic behavior of such tubes is considered, in the absence of external water. A two-dimensional analysis
of a cross section of the tube is conducted. The tube is inflated with air, and the weight of the tube causes
the equilibrium shape to be noncircular. The material is assumed to be inextensible and to have no bending
resistance. Equilibrium configurations and small vibrations about equilibrium are investigated for tubes on
rigid, Winkler, and Pasternak foundations. The mode shape corresponding to the lowest frequency is
symmetric with two nodes. The effects of the internal pressure, foundation stiffness, and foundation shear
modulus on the first four frequencies and modes are determined numerically using a shooting method.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

This research is part of a study on the use of inflated tubes as an alternative to sandbags for
restraining floodwaters. Web sites of manufacturers of such unanchored tubes include Refs. [1–6].
Most of these tubes are inflated with water, but one of the manufacturers fills the tubes with air,
and an attached apron (skirt) lies under the external floodwater; frictional resistance of the apron
with the ground inhibits rolling or sliding of the tube [3].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Related to these freestanding tubes are anchored inflatable dams. They are used for a variety of
purposes, such as increasing the height of existing dams or spillways, impounding water for
recreational basins, diverting water for irrigation or groundwater recharging, controlling water
flow for hydroelectric production, and preventing river backflows caused by high tides.
Publications involving the vibrations of these anchored tubes include Refs. [7–16].
With regard to unanchored tubes, equilibrium configurations for liquid-filled tubes have been

investigated previously (e.g., Refs. [17,18] and other studies cited therein). Stacked tubes were
treated in Ref. [19], with one tube on top of another tube or on top of a pair of tubes in a pyramid
configuration. In Refs. [17,19], both rigid and deformable foundations were considered. Ref. [20]
describes a numerical investigation of a water-filled tube resting on the ground and subjected to
external water on one side, with a wedge placed on the other side to inhibit rolling or sliding.
Vibrations of these tubes have not been analyzed previously.
The tube considered here is inflated with air, and the weight of the tube is included, so that the

cross section is not circular. The bending stiffness of the tube is neglected (i.e., the tube is treated
as a membrane), and the material is assumed to be inextensible. The tube is long, and a two-
dimensional analysis is conducted. The equilibrium shape is determined first, and then small
vibrations of the cross section about its equilibrium shape are analyzed. In Section 2, the problem
is formulated for a tube resting on a rigid, horizontal foundation, and associated vibration
frequencies and mode shapes are presented in Section 3. Deformable Winkler and Pasternak
foundations are considered in Section 4, followed by numerical results in Section 5. Section 6
contains concluding remarks.
2. Formulation for rigid foundation

Fig. 1 shows the cross section of a tube resting on a rigid foundation. Friction between the tube
and the foundation is neglected. The origin O for this case is at the right end of the contact region.
The coordinates are X(S,T) and Y(S,T), and the angle of the tangent with the horizontal is y(S,T),
where S is the arc length and T is time. The total perimeter is L, the contact length is B, the
internal air pressure is P, the mass per length of the tube is m, the coefficient of viscous damping is
C, and the tension in the tube is Q(S,T). Damping will not be included in the analysis presented
here, but will be included in one set of results.
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Fig. 1. Equilibrium configuration, forces, and coordinates for rigid foundation.
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If the reaction force per unit length is denoted F, then overall equilibrium of vertical forces
yields FB ¼ mgL; and equilibrium of a free-body diagram of the tube along the foundation gives
FB ¼ ðP þ mgÞB: Eliminating F provides the equation B ¼ mgL=ðP þ mgÞ for the contact length.
For the range 0oSoL2B; geometrical relationships are

qX

qS
¼ cos y;

qY

qS
¼ sin y: ð1a;bÞ

Based on the free-body diagram in Fig. 2, with K, GP, and C equal to zero, dynamic equilibrium
of forces in the tangential and normal directions yields

m
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The analysis is carried out in terms of the nondimensional quantities
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where O is a vibration frequency.
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Fig. 2. Free-body diagram including inertia, damping, and deformable foundation forces.
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The coordinates, rotation, and tension are written in the form

xðs; tÞ ¼ xeðsÞ þ xdðsÞ sin ot; yðs; tÞ ¼ yeðsÞ þ ydðsÞ sin ot;

yðs; tÞ ¼ yeðsÞ þ ydðsÞ sin ot; qðs; tÞ ¼ qeðsÞ þ qdðsÞ sin ot; ð4a2dÞ

where subscripts e and d represent equilibrium and dynamic quantities, respectively. Eqs. (4) are
substituted into Eqs. (1) and (2), and the resulting equations are linearized in the dynamic
quantities. The terms independent of time provide the following governing equations for
equilibrium:

dxe

ds
¼ cos ye;

dye

ds
¼ sin ye; ð5a;bÞ

dye

ds
¼

p þ cos ye

qe

;
dqe

ds
¼ sin ye: ð6a;bÞ

The remaining terms lead to the following equations governing small vibrations about
equilibrium:

dxd

ds
¼ �yd sin ye;

dyd

ds
¼ yd cos ye; ð7a;bÞ

dyd

ds
¼

1

qe

o2ðxd sin ye � yd cos yeÞ � yd sin ye � qd

ðp þ cos yeÞ

qe

� �
; ð8aÞ

dqd

ds
¼ �o2ðxd cos ye þ yd sin yeÞ þ yd cos ye ð8bÞ
3. Results for rigid foundation

Equilibrium configurations are determined first. Based on Eqs. (5b) and (6b), one can
write qeðsÞ ¼ yeðsÞ þ q0 where q0 is the tension at s ¼ 0: This is used in Eq. (6a), and then
Eqs. (5a,b) and (6a), as well as all other sets of equations to be treated, are solved using a shooting
method and the computer programMathematica [21]. The boundary conditions at s ¼ 0 (point O)
are xe ¼ ye ¼ ye ¼ 0: The nondimensional internal air pressure p is specified, and b ¼ 1=ðp þ 1Þ
from the equilibrium arguments above. The tension parameter q0 is varied until the boundary
condition ye ¼ 2p at s ¼ 1� b (point R in Fig. 1) is satisfied with sufficient accuracy.
(The conditions xe ¼ �b and ye ¼ 0 at point R are satisfied automatically by the
solution.) Alternatively, one could use symmetry and shoot to s ¼ ð1bÞ=2 where xe ¼ �b=2
and ye=p.
Equilibrium shapes are presented in Fig. 3 for five values of nondimensional internal pressure p,

which must be greater than unity for the pressure to overcome the weight of the tube. The
nondimensional tube heights corresponding to p ¼ 1:05; 2, 3, 4, and 5 are 0.050, 0.184, 0.225,
0.247, and 0.260, respectively. The associated values of the maximum tension, which occurs at the
top of the tube, are q ¼ 0:0511; 0.276, 0.450, 0.616, and 0.780.
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Fig. 3. Equilibrium configurations for tube on rigid foundation.
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Now small vibrations about equilibrium are considered. The previous equilibrium solution for
qe is utilized. The equilibrium Eqs. (5) and (6) are augmented by the dynamic Eqs. (7) and (8). At
s ¼ 0; the boundary conditions are yd ¼ yd ¼ 0: In the shooting method, the initial condition
xdð0Þ is specified as a modal amplitude, and the initial condition qdð0Þ and frequency o are varied
until the end conditions yd ¼ yd ¼ 0 are satisfied. For symmetric modes, the arc length at the end
of the raised part of the tube is at s ¼ 1� b � 2xdð0Þ; since the tube displaces outward the same
amount at points O and R in Fig. 1; for anti-symmetric modes the end is at s ¼ 1� b; since the
tube displaces horizontally by equal amounts in the same direction at O and R. The initial guess
for the frequency is placed in different ranges so as to obtain the lowest four vibration frequencies
and corresponding modes.
The first four mode shapes for p ¼ 3 are shown in Fig. 4, along with the equilibrium shape. The

corresponding frequencies are o ¼ 5:02; 8.37, 11.4, and 14.3. The first mode is symmetric with two
nodes, the second is anti-symmetric with three nodes, and so on. The same forms occur for other
cases. A mode with no nodes does not occur, since the tube is inextensible and the curvature of the
equilibrium shape does not change sign. Also, a mode with one node does not exist. For anchored
tubes with two supports (e.g., at O and R in Fig. 1), the first mode is anti-symmetric with a single
node [7]. Here, however, the tube would roll to one side if put in such a shape, rather than
vibrating about the equilibrium configuration.
For nondimensional pressure p in the range 1.05opo5, the variations of the first

four frequencies with p are plotted in Fig. 5. The rate of increase of o with p decreases as p
increases.
Next, viscous damping is considered. The damping forces involving the coefficient C in Fig. 2

are included. The quantity o2 in Eqs. (8) is replaced by o2 � ico: The real part of the resulting
complex quantity o gives the oscillating frequency of the decaying free motion (i.e., the damped
frequency), and is plotted in Fig. 6 as a function of the nondimensional damping coefficient c for
the case p ¼ 3: The damped frequency decreases as the damping coefficient increases. When one of
the frequencies reduces to zero, the corresponding modal motion becomes overdamped. Results
for other values of p are given in Ref. [22].
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Fig. 4. First four vibration modes when p ¼ 3: (a) first mode (symmetric); (b) second mode (anti-symmetric); (c) third

mode (symmetric); (d) fourth mode (anti-symmetric).
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Fig. 5. First four vibration frequencies versus internal pressure.
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4. Formulation for deformable foundation

It is assumed now that the tube rests on a Pasternak foundation, with a Winkler foundation
included as a special case. The cross section is depicted in Fig. 7, where K is the elastic Winkler
coefficient (representing a continuum of linear vertical springs) and GP is the shear stiffness for a
Pasternak layer [23]. Now the origin of the coordinate system is at the bottom of the tube, which
has settlement Hf below the foundation level. When the tube displaces downward into the
foundation, the upward forces are proportional to this displacement and to its second derivative
(which approximates the curvature), as shown in Fig. 2.
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Fig. 6. First four damped frequencies versus damping coefficient when p ¼ 3:
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Fig. 7. Equilibrium configuration, forces, and coordinates for deformable foundation.
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The nondimensional quantities in Eq. (3) are used in the analysis. For no damping, the
governing equations are the two geometrical relationships as before and, for yohf ;

q
@y
@s

¼
@2y

@t2
cos y�

@2x

@t2
sin yþ p þ cos y� kðhf � yÞ cos y� gP

@2y

@s2
cos y; ð9aÞ

@q

@s
¼

@2x

@t2
cos yþ

@2y

@t2
sin yþ sin y� kðhf � yÞ sin y� gP

@2y

@s2
sin y: ð9bÞ

For y4hf, the terms involving k and gP are deleted from Eqs. (9) and subsequent equations.
For equilibrium, Eqs. (5) are valid, along with

dye

ds
¼

1

qe

kðye � hf Þ cos ye � gP

d2ye

ds2
cos ye þ p þ cos ye

� �
; ð10aÞ

dqe

ds
¼ kðye � hf Þ � gP

d2ye

ds2
þ 1

� �
sin ye; ð10bÞ
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when yohf : Differentiation of Eq. (5b) yields

d2ye

ds2
¼

dye

ds
cos ye ð11Þ

which is used in Eqs. (10). Then Eq. (10a) is written in the form

dye

ds
¼

kðye � hf Þ cos ye þ p þ cos ye

qe þ gPcos
2ye

; ð12Þ

and Eqs. (5a), (5b), (10b), and (12) form a system of first-order equations for xe(s), ye(s), qe(s), and
ye(s). An ‘‘If’’ statement is used in Mathematica to handle the changes in the equations when y
becomes larger than hf (i.e., at point A in Fig. 7).
For small vibrations about equilibrium, Eqs. (4) are used in Eqs. (9) and the procedure used in

Section 2 is applied. Eqs. (7) are again applicable, along with

qd

dye

ds
þ qe

dyd

ds
¼ o2 xd sin ye � yd cos ye

� �
� yd sin ye

þ kðhf � yeÞyd sin ye þ kyd cos ye þ gP

d2ye

ds2
yd sin ye � gP

d2yd

ds2
cos ye; ð13aÞ

dqd

ds
¼ �o2 xd cos ye þ yd sin ye

� �
þ yd cos ye � kðhf � yeÞyd cos ye

þ kyd sin ye � gP

d2ye

ds2
yd cos ye � gP

d2yd

ds2
sin ye: ð13bÞ

By differentiating Eq. (7b), one obtains

d2yd

ds2
¼

dyd

ds
cos ye �

dye

ds
yd sin ye: ð14Þ

With the use of Eqs. (11), (12), and (14), Eqs. (13) can be written as first-order equations in yd

and qd :
5. Results for deformable foundation

To obtain equilibrium configurations, the parameters p, k, and gP are specified, and Eqs. (5)
and (10) are solved. At s ¼ 0 (the bottom of the tube), xe ¼ ye ¼ ye ¼ 0: The initial condition qeð0Þ
and the maximum settlement hf are varied until the conditions xe ¼ 0 and ye ¼ p are satisfied at
s ¼ 0:5 (the top of the tube, i.e., point B in Fig. 7).
For the Winkler foundation, i.e., with gP ¼ 0; equilibrium shapes are plotted in Fig. 8 for p ¼ 2

and k ¼ 100; 200, andN (i.e., a rigid foundation). Pasternak foundations are considered in Fig. 9,
with p ¼ 2; k ¼ 200; and gP ¼ 0 (Winkler foundation), 1.5, and 30. As either k or gP increases, the
settlement decreases.
Vibration frequencies and modes are computed with the use of Eqs. (7) and (13) in first-order

form, together with the equilibrium Eqs. (5) and (10) and their solutions for qe(0) and hf. For
symmetric modes, at s ¼ 0 the values of xd and yd are 0, yd is specified, and qd is an unknown
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Fig. 9. Equilibrium configurations for tube on Pasternak foundation when p ¼ 2 and k ¼ 200:
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(along with the frequency o), and the shooting conditions at s ¼ 0:5 are xd ¼ yd ¼ 0: For anti-
symmetric modes, the only changes are that yd ð0Þ is specified and yd(0) is zero.
The first four vibration modes are shown in Fig. 10, along with the equilibrium configuration,

for the case p ¼ 2; k ¼ 200; and gP ¼ 0: The effect of the Winkler coefficient k on the first four
vibration frequencies is shown in Fig. 11 for the case p ¼ 2 and gP ¼ 0: The lowest two
frequencies are barely affected in the range 40oko200 shown, while the next two frequencies
increase and then level off. Fig. 12 illustrates how the shear modulus of the foundation affects the
first four frequencies for the case p ¼ 2 and k ¼ 200: The frequencies decrease as gP increases from
zero, with an initial high rate of reduction. This unexpected behavior is related to the change in
the equilibrium shape as gP is increased.
Another type of deformable foundation involves the Winkler springs plus a stretched

membrane below the structure. It is called a Filonenko–Borodich foundation [22]. For small
slopes of the tube, it can be approximated by the forces in the Pasternak model with gP replaced
by the nondimensional constant tension tFB in the supporting membrane. If the slope is not always
small for yohf ; then the Pasternak forces are replaced by a tangential force. The quantity qe in
Eqs. (6), (10), (12), and (13) is replaced by qe þ tFB; the quantity q in Eqs. (9) is replaced by
q þ tFB; and gP is set equal to zero. For the examples involving a Pasternak foundation here, if the
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Fig. 10. First four vibration modes when p ¼ 2 and k ¼ 200: (a) first mode (symmetric); (b) second mode (anti-

symmetric); (c) third mode (symmetric); (d) fourth mode (anti-symmetric).
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Fig. 11. First four frequencies versus Winkler coefficient when p ¼ 2 and gP ¼ 0:
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Pasternak shear layer is replaced by a Filonenko–Borodich membrane with gP ¼ tFB; the
numerical vibration results are almost the same.
6. Concluding remarks

Long air-filled tubes resting on a rigid or deformable foundation have been considered. The
self-weight of the tube was included in the analysis. The material was assumed to behave like an
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inextensible membrane, so that it had no bending stiffness. A rigid foundation was treated first.
The governing equations for equilibrium and for small vibrations about equilibrium were
formulated and solved numerically. The first four frequencies and modes were determined
numerically for a given internal pressure. As the internal air pressure increases, the frequencies
increase. An increase of damping lowers the damped vibration frequency, and modes can become
overdamped.
A similar analysis was carried out for a Winkler foundation and for a Pasternak foundation.

The frequencies increase with an increase in the spring stiffness (i.e., the Winkler coefficient), but
decrease with an increase in the shear modulus of the foundation.
The shooting method was effective in computing the unknown parameters in the governing

equilibrium and vibration equations. Unlike the case of anchored inextensible tubes, these tubes
do not exhibit a mode with a single node. Therefore, the lowest frequency here is associated with a
symmetric mode having two nodes. The vibration modes alternate being symmetric or anti-
symmetric, and the nth mode has n þ 1 nodes.
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